References

  1. Anderman, E.R.& Hill, M.C., MODFLOW-2000, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATE MODEL-DOCUMENTATION OF THE HYDROGEOLOGIC-UNIT FLOW (HUF) PACKAGE, USGS, Denver, CO, 2000.

  2. Carle, Steven F., T-PROGS: Transition Probability Geostatistical Software Version 2.1, Hydrologic Sciences Graduate Group University of California, Davis, 1999.

  3. Clough, R. W., and J. L. Tocher, 1965, Finite element stiffness matrices for analysis of plates in bending, Proc. Conf. Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio, Air Force Flight Dynamics Lab., Research and Technology Division, Air Force Systems Command, The Air Force Institute of Technology, Air University, pp. 515-545.

  4. Davis, J.C., 1986, Statistics and Data Analysis in Geology, John Wiley & Sons, New York, 550 p.

  5. Deutsch, C.V., & A.G. Journel, 1992, GSLIB: Geostatistical Software Library and User's Guide, Oxford University Press, New York, 340 p.

  6. Franke, R. & G. Nielson, 1980, "Smooth interpolation of large sets of scattered data," International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1691-1704.

  7. Franke, R., 1982, "Scattered data interpolation: tests of some methods," Mathematics of Computation, Vol. 38, No. 157, pp. 181-200.

  8. Harbaugh, A., Banta, E.R., Hill, M.C., & McDonald, M.G., MODFLOW-2000, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL-USER GUIDE TO MODULARIZATION CONCEPTS AND THE GROUND-WATER FLOW PROCESS, USGS, Reston, VA, 2000.

  9. Heine, G. W., 1986, "A controlled study of some two-dimensional interpolation methods," COGS Computer Contributions, Vol. 2, No. 2, pp. 60-72.

  10. Jones, N. L., 1990, Solid Modeling of Earth Masses for Applications in Geotechnical Engineering, Ph.D. Dissertation, The University of Texas at Austin, 324 p.

  11. Journel, A.G., & Huijbregts, C.J., 1978, Mining geostatistics. Academic Press, New York, NY.

  12. Lam, N.S., 1983, "Spatial interpolation methods: a review," The American Cartographer, Vol. 10, No. 2, pp. 129-149.

  13. Lancaster, Peter and Kestutis Salkauskas, 1986, Curve and Surface Fitting, Academic Press, London, 280 pp.

  14. Lin, H.C., D.R. Richards, G.T. Yeh, J.R. Cheng, H.P. Chang, N.L. Jones, 1996, FEMWATER: A Three-Dimensional Finite Element Computer Model for Simulating Density Dependent Flow and Transport, U.S. Army Engineer Waterways Experiment Station Technical Report, 129 p.

  15. McDonald, M.G., & A.W. Harbaugh, 1988, A modular three-dimensional finite-difference ground-water flow model, Techniques of Water Resources Investigations 06-A1, United States Geological Survey.

  16. Moore, David S., 1995, The basic principles of statistics, W.H. Freeman and Company, New York.

  17. Olea, R.A., 1974, "Optimal contour mapping using universal kriging." J. Geophys. Res., Vol. 79, No. 5, pp. 695-702.

  18. Owen, S.J., 1992, An implementation of natural neighbor interpolation in three dimensions, Master's Thesis, Brigham Young University, 119 p.

  19. Philip, G.M., & D.F. Watson, 1986, "Comment on 'comparing splines and kriging,'" Computers and Geosciences, Vol. 12, No. 2, pp. 243-245.

  20. Pollock, D.W., 1994, User's Guide for MODPATH/MODPATH-PLOT, Version 3: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite difference ground-water model, U.S. Geological Survey, Open-File Report 94-464, Reston, Virginia, Sept., 1994.

  21. Prudic, David E., 1989, Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model, USGS Open-File Report 88-729, Carson City, Nevada.

  22. Royle, A. G., F. L. Clausen, & P. Frederiksen, 1981, "Practical universal kriging and automatic contouring," Geo-Processing, Vol. 1, No. 4, pp. 377-394.

  23. Shepard, D., 1968, "A two dimensional interpolation function for irregularly spaced data," Proc. 23rd National Conference of the ACM, pp. 517-523.

  24. Sibson, R., 1981, "A brief description of natural neighbor interpolation," Interpreting Multivariate Data, John Wiley & Sons, New York, pp. 21-36.

  25. Watson, D. F. and G. M. Philip, 1985, A refinement of inverse distance weighted interpolation, Geo-Processing, Vol., 2, No. 4, pp. 315-327.

  26. WES, 1994, FEMWATER Reference Manual, U.S. Army Engineer Waterways Experiment Station.

  27. Wingle, W.L., E.P. Poeter and S.A. McKenna, 1995, UNCERT User's Guide: A Geostatistical Uncertainty Analysis Package Applied to Groundwater Flow and Contaminant Transport Modeling, Colorado School of Mines. http://uncert.mines.edu/.

  28. Yeh, G.T., S.S. Hansen, B. Lester, R. Strobl, J. Scarbrough, 1992, 3DFEMWATER/3DLEWASTE: Numerical Codes for Delineating Wellhead Protection Areas in Agricultural Regions Based on the Assimilative Capacity Criterion, U.S. Environmental Protection Agency.

  29. Zheng, C., Wang, P., 1998, "MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems." University of Alabama.